Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Iterative Thresholding Al… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Iterative Thresholding Algorithm for Multiexponential Decay Applied to PGSE NMR Data

Artikel i vetenskaplig tidskrift
Författare Mateusz Urbanczyk
Diana Bernin
Wiktor Kozminski
Krzysztof Kazimierczuk
Publicerad i Analytical Chemistry
Volym 85
Nummer/häfte 3
Sidor 1828-1833
ISSN 0003-2700
Publiceringsår 2013
Publicerad vid Svenskt NMR-centrum vid Göteborgs universitet
Sidor 1828-1833
Språk en
Länkar dx.doi.org/10.1021/ac3032004
Ämnesord linear inverse problems, spectroscopy data, resolution, gradient, dosy
Ämneskategorier Analytisk kemi


Pulsed gradient spin echo (PGSE) is a well-known NMR technique for determining diffusion coefficients. Various signal processing techniques have been introduced to solve the task, which is especially challenging when the decay is multiexponential with an unknown number of components. Here, we introduce a new method for the processing of such types of signals. Our approach modifies the Tikhonov’s regularization, known previously in CONTIN and Maximum Entropy (MaxEnt) methods, by using the -norm penalty function. The modification enforces sparsity of the result, which improves resolution, compared to both mentioned methods. We implemented the Iterative Thresholding Algorithm for Multiexponential Decay (ITAMeD), which employs the -norm minimization, using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA). The proposed method is compared with the Levenberg–Marquardt-Fletcher fitting, Non-negative Least Squares (NNLS), CONTIN, and MaxEnt methods on simulated datasets, with regard to noise vulnerability and resolution. Also, the comparison with MaxEnt is presented for the experimental data of polyethylene glycol (PEG) polymer solutions and mixtures of these with various molecular weights (1080 g/mol, 11 840 g/mol, 124 700 g/mol). The results suggest that ITAMeD may be the method of choice for monodispersed samples with “discrete” distributions of diffusion coefficients.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?