Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A comparison of convex an… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A comparison of convex and non-convex compressed sensing applied to multidimensional NMR

Artikel i vetenskaplig tidskrift
Författare Krzysztof Kazimierczuk
Vladislav Orekhov
Publicerad i Journal of Magnetic Resonance
Volym 223
Sidor 1-10
ISSN 1090-7807
Publiceringsår 2012
Publicerad vid Svenskt NMR-centrum vid Göteborgs universitet
Sidor 1-10
Språk en
Länkar dx.doi.org/10.1016/j.jmr.2012.08.00...
Ämnesord Non-uniform sampling, Compressed sensing, Multi-dimensional decomposition, Protein NMR, signal reconstruction, fourier-transform, data sets, spectroscopy, resolution, decomposition, spectra, information, acquisition, principles, OCESSING, VOLS 1-1233rd IEEE International Conference on Acoustics, Speech and Signal Processing
Ämneskategorier Biologiska vetenskaper

Sammanfattning

The resolution of multidimensional NMR spectra can be severely limited when regular sampling based on the Nyquist-Shannon theorem is used. The theorem binds the sampling rate with a bandwidth of a sampled signal and thus implicitly creates a dependence between the line width and the time of experiment, often making the latter one very long. Recently, Candes et al. (2006)[25] formulated a non-linear sampling theorem that determines the required number of sampling points to be dependent mostly on the number of peaks in a spectrum and only slightly on the number of spectral points. The result was pivotal for rapid development and broad use of signal processing method called compressed sensing. In our previous work, we have introduced compressed sensing to multidimensional NMR and have shown examples of reconstruction of two-dimensional spectra. In the present paper we discuss in detail the accuracy and robustness of two compressed sensing algorithms: convex (iterative soft thresholding) and non-convex (iteratively re-weighted least squares with local l(0)-norm) in application to two- and three-dimensional datasets. We show that the latter method is in many terms more effective, which is in line with recent works on the theory of compressed sensing. We also present the comparison of both approaches with multidimensional decomposition which is one of the established methods for processing of non-linearly sampled data. (C) 2012 Elsevier Inc. All rights reserved.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?