Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Ergodic results and bound… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Ergodic results and bounds on the optimal value in subgradient optimization

Paper i proceeding
Författare Torbjörn Larsson
Michael Patriksson
Ann-Brith Strömberg
Publicerad i Operations Research Proceedings 1995
Sidor 30-35
ISBN 978-3540608066
Publiceringsår 1996
Publicerad vid Institutionen för matematik
Sidor 30-35
Språk en
Ämnesord Nonsmooth minimization, Conditional subgradient optimization, Ergodic sequences, Lagrange multipliers
Ämneskategorier Optimeringslära, systemteori

Sammanfattning

Subgradient methods are popular tools for nonsmooth, convex minimization, especially in the context of Lagrangean relaxation; their simplicity has been a main contribution to their success. As a consequence of the nonsmoothness, it is not straightforward to monitor the progress of a subgradient method in terms of the approximate fulfilment of optimality conditions, since the subgradients used in the method will, in general, not accumulate to subgradients that verify optimality of a solution obtained in the limit. Further, certain supplementary information, such as convergent estimates of Lagrange multipliers, is not directly available in subgradient schemes.

As a means for overcoming these weaknesses of subgradient optimization methods, we introduce the computation of an ergodic (averaged) sequence of subgradients. Specifically, we consider a nonsmooth, convex program solved by a conditional subgradient optimization scheme (of which the traditional sub gradient optimization method is a special case) with divergent series step lengths, which generates a sequence of iterates that converges to an optimal solution. We show that the elements of the ergodic sequence of subgradients in the limit fulfill the optimality conditions at this optimal solution. Further, we use the convergence properties of the ergodic sequence of subgradients to establish convergence of an ergodic sequence of Lagrange multipliers. Finally, some potential applications of these ergodic results are briefly discussed.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?