Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Bayesian machine learning… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Bayesian machine learning improves single-wavelength anomalous diffraction phasing

Artikel i vetenskaplig tidskrift
Författare Maria-Jose Garcia-Bonete
Gergely Katona
Publicerad i Acta Crystallographica a-Foundation and Advances
Volym 75
Sidor 851-860
ISSN 2053-2733
Publiceringsår 2019
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 851-860
Språk en
Länkar dx.doi.org/10.1107/s205327331901144...
Ämnesord single-wavelength X-ray anomalous diffraction, SAD, Friedel pairs, Bijvoet pairs, continuous rotation data collection, inverse-beam, geometry, Bayesian inference, survivin, structure refinement, signal, lysozyme, Chemistry, Crystallography
Ämneskategorier Kemi

Sammanfattning

Single-wavelength X-ray anomalous diffraction (SAD) is a frequently employed technique to solve the phase problem in X-ray crystallography. The precision and accuracy of recovered anomalous differences are crucial for determining the correct phases. Continuous rotation (CR) and inverse-beam geometry (IBG) anomalous data collection methods have been performed on tetragonal lysozyme and monoclinic survivin crystals and analysis carried out of how correlated the pairs of Friedel's reflections are after scaling. A multivariate Bayesian model for estimating anomalous differences was tested, which takes into account the correlation between pairs of intensity observations and incorporates the a priori knowledge about the positivity of intensity. The CR and IBG data collection methods resulted in positive correlation between I(+) and I(-) observations, indicating that the anomalous difference dominates between these observations, rather than different levels of radiation damage. An alternative pairing method based on near simultaneously observed Bijvoet's pairs displayed lower correlation and it was unsuccessful for recovering useful anomalous differences when using the multivariate Bayesian model. In contrast, multivariate Bayesian treatment of Friedel's pairs improved the initial phasing of the two tested crystal systems and the two data collection methods.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
http://www.gu.se/forskning/publikation/?publicationId=286359
Utskriftsdatum: 2020-02-22