Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Mathematical modelling of… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

# Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis

Artikel i vetenskaplig tidskrift
Författare Adam A. Malik Philip Gerlee Journal of Mathematical Biology 78 7 2289-2315 0303-6812 2019 Institutionen för matematiska vetenskaper 2289-2315 en dx.doi.org/10.1007/s00285-019-01344... Cell migration, Durotaxis, Stochastic model, Jump process, Advection-diffusion equation, extracellular-matrix, substrate stiffness, organization, Life Sciences & Biomedicine - Other Topics, Mathematical & Computational, Biology Matematik

## Sammanfattning

Durotaxis, the phenomena where cells migrate up a gradient in substrate stiffness, remains poorly understood. It has been proposed that durotaxis results from the reinforcement of focal adhesions on stiff substrates. In this paper we formulate a mathematical model of single cell migration on elastic substrates with spatially varying stiffness. We develop a stochastic model where the cell moves by updating the position of its adhesion sites at random times, and the rate of updates is determined by the local stiffness of the substrate. We investigate two physiologically motivated mechanisms of stiffness sensing. From the stochastic model of single cell migration we derive a population level description in the form of a partial differential equation for the time evolution of the density of cells. The equation is an advection-diffusion equation, where the advective velocity is proportional to the stiffness gradient. The model shows quantitative agreement with experimental results in which cells tend to cluster when seeded on a matrix with periodically varying stiffness.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
http://www.gu.se/forskning/publikation/?publicationId=281398
Utskriftsdatum: 2020-06-07