Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Coupling of urban energy … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Coupling of urban energy balance model with 3-D radiation model to derive human thermal (dis)comfort

Artikel i vetenskaplig tidskrift
Författare S. M Oswald
M Revesz
H Trimmel
P Weihs
S Zamini
A Schneider
M Peyerl
S Krispel
H.E Reider
E Mursch-Radlgruber
Fredrik Lindberg
Publicerad i International journal of biometeorology
Volym 63
Nummer/häfte 6
Sidor 711-722
ISSN 0020-7128
Publiceringsår 2019
Publicerad vid Institutionen för geovetenskaper
Sidor 711-722
Språk en
Länkar doi.org/10.1007/s00484-018-1642-z
Ämnesord SOLWEIG; PV energy balance; Surface temperature parameterization; UTCI
Ämneskategorier Fysisk geografi, Meteorologi och atmosfärforskning, Klimatforskning

Sammanfattning

While capabilities in urban climate modeling have substantially increased in recent decades, the interdependency of changes in environmental surface properties and human (dis)comfort have only recently received attention. The open-source solar long-wave environmental irradiance geometry (SOLWEIG) model is one of the state-of-the-art models frequently used for urban (micro-)climatic studies. Here, we present updated calculation schemes for SOLWEIG allowing the improved prediction of surface temperatures (wall and ground). We illustrate that parameterizations based on measurements of global radiation on a south-facing vertical plane obtain better results compared to those based on solar elevation. Due to the limited number of ground surface temperature parameterizations in SOLWEIG, we implement the two-layer force-restore method for calculating ground temperature for various soil conditions. To characterize changes in urban canyon air temperature (Tcan), we couple the calculation method as used in the Town Energy Balance (TEB) model. Comparison of model results and observations (obtained during field campaigns) indicates a good agreement between modeled and measured Tcan, with an explained variance of R2 = 0.99. Finally, we implement an energy balance model for vertically mounted PV modules to contrast different urban surface properties. Specifically, we consider (i) an environment comprising dark asphalt and a glass facade and (ii) an environment comprising bright concrete and a PV facade. The model results show a substantially decreased Tcan (by up to − 1.65°C) for the latter case, indicating the potential of partially reducing/mitigating urban heat island effects.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
http://www.gu.se/forskning/publikation/?publicationId=273780
Utskriftsdatum: 2019-08-22