Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Proceedings of the Confer… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Proceedings of the Conference on Logic and Machine Learning in Natural Language (LaML 2017), Gothenburg, 12 - 13 June

Proceeding
Författare Simon Dobnik
Shalom Lappin
ISSN 2002-9764
Förlag CLASP: Centre for Language and Studies in Probability, FLOV, University of Gothenburg
Förlagsort Gothenburg, Sweden
Publiceringsår 2017
Publicerad vid Institutionen för filosofi, lingvistik och vetenskapsteori
Språk en
Länkar hdl.handle.net/2077/54911
Ämnesord language, logic, machine learning, deep learning, neural networks, computational linguistics, language technology, artificial intelligence
Ämneskategorier Lingvistik, Datorlingvistik

Sammanfattning

The past two decades have seen impressive progress in a variety of areas of AI, particularly NLP, through the application of machine learning methods to a wide range of tasks. With the intensive use of deep learning methods in recent years this work has produced significant improvements in the coverage and accuracy of NLP systems in such domains as speech recognition, topic identification, semantic interpretation, and image description generation. While deep learning is opening up exciting new approaches to long standing, difficult problems in computational linguistics, it also raises important foundational questions. Specifically, we do not have a clear formal understanding of why multi-level recursive deep neural networks achieve the success in learning and classification that they are delivering. It is also not obvious whether they should displace more traditional, logically driven methods, or be combined with them. Finally, we need to explore the extent, if any, to which both logical models and machine learning methods offer insights into the cognitive foundations of natural language. The aim of the Conference on Logic and Machine Learning in Natural Language (LAML) was to initiate a dialogue between these two approaches, where they have traditionally remained separate and in competition.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
http://www.gu.se/forskning/publikation/?publicationId=262943
Utskriftsdatum: 2019-09-17