Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

The dynamics of DNA methy… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

The dynamics of DNA methylation covariation patterns in carcinogenesis

Artikel i vetenskaplig tidskrift
Författare Teschendorff A
X Liu
Helena Carén
SM Pollard
S Beck
M Widschwendter
L Chen
Publicerad i PLoS Computational Biology
Volym 10
Nummer/häfte 7
ISSN 1553-734X
Publiceringsår 2014
Publicerad vid Sahlgrenska Cancer Center
Institutionen för biomedicin, avdelningen för patologi
Språk en
Länkar dx.doi.org/10.1371/journal.pcbi.100...
Ämneskategorier Medicinsk bioteknologi, Cancer och onkologi, Biostatistik, Bioinformatik (beräkningsbiologi)

Sammanfattning

Recently it has been observed that cancer tissue is characterised by an increased variability in DNA methylation patterns. However, how the correlative patterns in genome-wide DNA methylation change during the carcinogenic progress has not yet been explored. Here we study genome-wide inter-CpG correlations in DNA methylation, in addition to single site variability, during cervical carcinogenesis. We demonstrate how the study of changes in DNA methylation covariation patterns across normal, intra-epithelial neoplasia and invasive cancer allows the identification of CpG sites that indicate the risk of neoplastic transformation in stages prior to neoplasia. Importantly, we show that the covariation in DNA methylation at these risk CpG loci is maximal immediately prior to the onset of cancer, supporting the view that high epigenetic diversity in normal cells increases the risk of cancer. Consistent with this, we observe that invasive cancers exhibit increased covariation in DNA methylation at the risk CpG sites relative to normal tissue, but lower levels relative to pre-cancerous lesions. We further show that the identified risk CpG sites undergo preferential DNA methylation changes in relation to human papilloma virus infection and age. Results are validated in independent data including prospectively collected samples prior to neoplastic transformation. Our data are consistent with a phase transition model of carcinogenesis, in which epigenetic diversity is maximal prior to the onset of cancer. The model and algorithm proposed here may allow, in future, network biomarkers predicting the risk of neoplastic transformation to be identified.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
http://www.gu.se/forskning/publikation/?publicationId=200892
Utskriftsdatum: 2019-09-17