Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Mesophyll conductance lim… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone

Artikel i vetenskaplig tidskrift
Författare Yansen Xu
Z. Z. Feng
B. Shang
L. L. Dai
Johan Uddling
Lasse Tarvainen
Publicerad i Science of the Total Environment
Volym 657
Sidor 136-145
ISSN 0048-9697
Publiceringsår 2019
Publicerad vid Institutionen för biologi och miljövetenskap
Sidor 136-145
Språk en
Länkar dx.doi.org/10.1016/j.scitotenv.2018...
Ämnesord Carboxylation, Mesophyll conductance, Ozone, Poplar, Photosynthesis, Stomatal conductance, temperature response functions, net primary productivity, diffusion, conductance, tropospheric ozone, chlorophyll fluorescence, specificity, factor, isoprene emission, co2 assimilation, norway spruce, gas-exchange, Environmental Sciences & Ecology
Ämneskategorier Biologiska vetenskaper

Sammanfattning

Finite mesophyll conductance (g(m)) reduces the rate of CO2 diffusion from the leaf intercellular space to the chloroplast and constitutes a major limitation of photosynthesis in trees. While it is well established that g(m) is decreased by stressors such as drought and high temperature, few studies have investigated if the phytotoxic air pollutant ozone (O-3) affects g(m). We quantified the relative importance of three different types of limitations of photosynthesis in poplar trees exposed to elevated O-3: decreases in stomatal conductance, g(m) and biochemical photosynthetic capacity. The O-3-induced reductions in light-saturated net photosynthesis were linked to significant declines in g(m) and biochemical photosynthetic capacity (in particular carboxylation). There was no significant effect of O-3 on stomatal conductance. Of the O-3-induced limitations on photosynthesis, g(m) limitation was by far the most important (-16%) while biochemical limitation (-8%) was rather small. Both limitations grew in magnitude over the study period and varied in response to leaf-specific O-3 exposure. Our findings suggest that declines in g(m) may play a key role in limiting photosynthesis of plants exposed to elevated O-3, an effect hitherto overlooked. (C) 2018 Elsevier B.V. All rights reserved.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?