Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Multiscale techniques for… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Multiscale techniques for parabolic equations

Artikel i vetenskaplig tidskrift
Författare Axel Målqvist
Anna Persson
Publicerad i Numerische Mathematik
Volym 138
Nummer/häfte 1
Sidor 191-217
ISSN 0029-599X
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 191-217
Språk en
Länkar doi.org/10.1007/s00211-017-0905-7
https://gup.ub.gu.se/file/207299
Ämnesord finite-element methods, spaces, Mathematics
Ämneskategorier Tillämpad matematik

Sammanfattning

We use the local orthogonal decomposition technique introduced in MAlqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the -norm. We present numerical examples, which confirm our theoretical findings.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?