Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Affinity Purification and… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Affinity Purification and Single-Molecule Analysis of Integral Membrane Proteins from Crude Cell-Membrane Preparations

Artikel i vetenskaplig tidskrift
Författare Anders Lundgren
B. J. Fast
S. Block
B. Agnarsson
E. Reimhult
A. Gunnarsson
F. Hook
Publicerad i Nano letters
Volym 18
Nummer/häfte 1
Sidor 381-385
ISSN 1530-6984
Publiceringsår 2018
Publicerad vid
Sidor 381-385
Språk en
Länkar dx.doi.org/10.1021/acs.nanolett.7b0...
Ämnesord Membrane-protein purification, BACE-1, membrane vesicles, functionalized nanoparticles, single-, supported lipid-bilayers, hydrodynamic-forces, microscopy, separation, vesicles, tracking, mobility, reveal, motion, Chemistry, Science & Technology - Other Topics, Materials Science, Physics,
Ämneskategorier Fysik


The function of integral membrane proteins is critically dependent on their naturally surrounding lipid membrane. Detergent-solubilized and purified membrane proteins are therefore often reconstituted into cell-membrane mimics and analyzed for their function with single-molecule microscopy. Expansion of this approach toward a broad range of pharmaceutically interesting drug targets and biomarkers however remains hampered by the fact that these proteins have low expression levels, and that detergent solubilization and reconstitution often cause protein conformational changes and loss of membrane-specific cofactors, which may impair protein function. To overcome this limitation, we here demonstrate how antibody-modified nanoparticles can be used to achieve affinity purification and enrichment of selected integral membrane proteins directly from cell membrane preparations. Nanoparticles were first bound to the ectodomain of beta-secretase 1 (BACE1) contained in cell-derived membrane vesicles. In a subsequent step, these were merged into a continuous supported membrane in a microfluidic channel. Through the extended nanoparticle tag, a weak (similar to fN) hydrodynamic force could be applied, inducing directed in-membrane movement of targeted BACE1 exclusively. This enabled selective thousand-fold enrichment of the targeted membrane protein while preserving a natural lipid environment. In addition, nanoparticle-targeting also enabled simultaneous tracking analysis of each individual manipulated protein, revealing how their mobility changed when moved from one lipid environment to another. We therefore believe this approach will be particularly useful for separation in-line with single-molecule analysis, eventually opening up for membrane-protein sorting devices analogous to fluorescence-activated cell sorting.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?