Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Membrane engineering for … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Membrane engineering for reduced acetic acid stress: insights from Zygosaccharomyces bailii

Konferensbidrag (offentliggjort, men ej förlagsutgivet)
Författare Lina Lindahl
Aline X S Santos
Samuel Genheden
Leif A Eriksson
Howard Riezman
Lisbeth Olsson
Maurizio Bettiga
Publicerad i Oral presentation at 12th Yeast Lipid Conference, May 20-22 2015, Ghent, Belgium
Publiceringsår 2015
Publicerad vid Institutionen för kemi och molekylärbiologi
Språk en
Ämnesord acetic acid, tolerance, sphingolipids, molecular dynamic simulations
Ämneskategorier Biokemi och molekylärbiologi

Sammanfattning

The high concentration of acetic acid released during pretreatment of lignocellulose raw material is a major obstacle to the microbial production of bio-based products. Acetic acid enters the cell mainly by passive diffusion across the plasma membrane and inhibits yeast by mechanisms such as reduction of intracellular pH, accumulation of the acetate anion, and by signaling effects triggering cell death. Through extensive characterization of the acetic acid tolerant yeast Zygosaccharomyces bailii, we have identified the cell membrane as a target for strain engineering with potential to increase acetic acid tolerance in Saccharomyces cerevisiae. We propose membrane permeability as a key component for Z. bailii’s acetic acid tolerance. We have previously shown that Z. bailii has a unique ability to remodel its plasma membrane upon acetic acid stress, to strongly increase its fraction of complex sphingolipids, at the expense of a drastic reduction of glycerophospholipids1. Here we further demonstrate the involvement of complex sphingolipids in acetic acid tolerance by decreasing sphingolipid synthesis using the drug myriocin, and characterize the acetic acid tolerance in terms of growth and intracellular pH. Furthermore we show the impact of complex sphingolipids on membrane physical properties using in silico membrane simulations. Ongoing membrane engineering of S. cerevisiae can potentially give additional strength to our findings. References 1 Lindberg et al. (2013), Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress, PLoS One 8: e73936.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?