Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

The stochastic opportunis… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

The stochastic opportunistic replacement problem, part I: models incorporating individual component lives

Artikel i vetenskaplig tidskrift
Författare Michael Patriksson
Ann-Brith Strömberg
Adam Wojciechowski
Publicerad i Annals of Operations Research
Volym 224
Nummer/häfte 1
Sidor 25-50
ISSN 0254-5330
Publiceringsår 2015
Publicerad vid Institutionen för matematiska vetenskaper, matematik
Sidor 25-50
Språk en
Länkar dx.doi.org/10.1007/s10479-012-1131-...
Ämnesord Maintenance optimization; Complexity analysis; Integer programming
Ämneskategorier Diskret matematik, Numerisk analys, Optimeringslära, systemteori

Sammanfattning

We consider an extension of the opportunistic replacement problem, which has been studied by Dickman et al. (The Journal of the Operational Research Society of India, 28:165–175, 1991), Andréasson (Optimization of opportunistic replacement activities in deterministic and stochastic multi-component systems, Licentiate thesis, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden, 2004), and Almgren et al. (The opportunistic replacement problem: analysis and case studies, Preprint, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden, 2011), that allows the individuals of the same component to have non-identical lives. Formulating and solving this problem constitute a first step towards solving the opportunistic replacement problem with uncertain component lives. We show that the problem is NP-hard even with time independent costs, and present two 0–1 integer programming models for the problem. We show that in model I the integrality requirement on a majority of the variables can be relaxed; this is in contrast to model II and the model from Andréasson (Optimization of opportunistic replacement activities in deterministic and stochastic multi-component systems, Licentiate thesis, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden, 2004). We remove all superfluous variables and constraints in model I and show that the remaining constraints are facet inducing. We also utilize a linear transformation of model I to obtain a stronger version of model II, i.e., model II+, which inherits the polyhedral properties of model I. Numerical experiments show that the solution time of model I is significantly lower than those of both model II and Andréasson’s model. It is also slightly lower than the solution time of model II+.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?