Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A three-dimensional aniso… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Kontaktformulär








 


OBS! Vill du ha svar, ange e-post eller telefonnummer!




A three-dimensional anisotropic point process characterization for pharmaceutical coatings

Artikel i vetenskaplig tidskrift
Författare Henrike Häbel
Tuomas Rajala
Mariagrazia Marucci
Catherine Boissier
Katja Schladitz
Claudia Redenbach
Aila Särkkä
Publicerad i Spatial Statistics
Volym 22
Nummer/häfte 2
Sidor 306-320
ISSN 2211-6753
Publiceringsår 2017
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 306-320
Språk en
Länkar https://doi.org/10.1016/j.spasta.20...
Ämnesord Inhomogeneity, K-function, Lennard-Jones pair-potential function, Pairwise Gibbs process, Porous material
Ämneskategorier Polymerkemi, Matematisk statistik, Övrig teknisk materialvetenskap

Sammanfattning

© 2017 Elsevier B.V. Spatial characterization and modeling of the structure of a material may provide valuable knowledge on its properties and function. Especially, for a drug formulation coated with a polymer film, understanding the relationship between pore structure and drug release properties is important to optimize the coating film design. Here, we use methods from image analysis and spatial statistics to characterize and model the pore structure in pharmaceutical coatings. More precisely, we use and develop point process theory to characterize the branching structure of a polymer blended film with data from confocal laser scanning microscopy. Point patterns, extracted by identifying branching points of pore channels, are both inhomogeneous and anisotropic. Therefore, we introduce a directional version of the inhomogeneous K-function to study the anisotropy and then suggest two alternative ways to model the anisotropic three-dimensional structure. First, we apply a linear transformation to the data such that it appears isotropic and subsequently fit isotropic inhomogeneous Strauss or Lennard-Jones models to the transformed pattern. Second, we include the anisotropy directly in a Lennard-Jones and a more flexible step-function model with anisotropic pair-potential functions. The methods presented will be useful for anisotropic inhomogeneous point patterns in general and for characterizing porous material in particular.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?