Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

A readable read: Automati… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se



OBS! Vill du ha svar, ange e-post eller telefonnummer!

A readable read: Automatic Assessment of Language Learning Materials based on Linguistic Complexity.

Artikel i vetenskaplig tidskrift
Författare Ildikó Pilán
Sowmya Vajjala
Elena Volodina
Publicerad i Computational Linguistics and Applications
Volym 7
Nummer/häfte 1
Sidor 143-159
ISSN 0976-0962
Publiceringsår 2016
Publicerad vid Institutionen för svenska språket
Sidor 143-159
Språk en
Länkar https://www.ijcla.org/
Ämnesord sentence readability, text readability, text classification, linguistic complexity, second language learning, machine learning
Ämneskategorier Svenska språket, Utbildningsvetenskap, Språkteknologi (språkvetenskaplig databehandling)


Corpora and web texts can become a rich language learning resource if we have a means of assessing whether they are linguistically appropriate for learners at a given proficiency level. In this paper, we aim at addressing this issue by presenting the first approach for predicting linguistic complexity for Swedish second language learning material on a 5-point scale. After showing that the traditional Swedish readability measure, Läsbarhetsindex (LIX), is not suitable for this task, we propose a supervised machine learning model, based on a range of linguistic features, that can reliably classify texts according to their difficulty level.Our model obtained an accuracy of 81.3% and an F-score of 0.8, which is comparable to the state of the art in English and is considerably higher than previously reported results for other languages. We further studied the utility of our features with single sentences instead of full texts since sentences are a common linguistic unit in language learning exercises. We trained a separate model on sentence-level data with five classes, which yielded 63.4% accuracy. Although this is lower than the document level performance, we achieved an adjacent accuracy of 92%. Furthermore, we found that using a combination of different features, compared to using lexical features alone, resulted in 7% improvement in classification accuracy at the sentence level, whereas at the document level, lexical features were more dominant. Our models are intended for use in a freely accessible web-based language learning platform for the automatic generation of exercises, and they will be available also in the form of web-services.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?