Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Fusion Generated Fast Par… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Kontaktformulär








 


OBS! Vill du ha svar, ange e-post eller telefonnummer!




Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity

Artikel i vetenskaplig tidskrift
Författare Patrik U Andersson
Leif Holmlid
Publicerad i Journal of Fusion Energy
Volym 31
Sidor 249-256
ISSN 0164-0313
Publiceringsår 2012
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 249-256
Språk en
Länkar www.springerlink.com/content/656v8n...
Ämnesord ICF. Fusion. Ultra-dense deuterium. Laser. Break-even
Ämneskategorier Jonfysik, Plasmafysik, Fusion

Sammanfattning

Nuclear fusion D+D processes are studied by nanosecond pulsed laser interaction with ultra-dense deuterium. This material has a density of 1029 cm-3 as shown in several previous publications. Laser power is \2 W (0.2 J pulses) and laser intensity is\1014 W cm-2 in the 5–10 lm wide beam waist. Particle detection by time-offlight energy analysis with plastic scintillators is used. Metal foils in the particle flux to the detector remove slow ions, and make it possible to convert and count particles with energy well above 1 MeV. The variation of the signal of MeV particles from D?D fusion is measured as a function of laser power. At relatively weak laser-emitter interaction, the particle signal from the laser focus varies as the square of the laser power. This indicates collisions in the ultra-dense deuterium of two fast deuterons released by Coulomb explosions. During experiments with stronger laser-emitter interaction, the signal varies approximately as the sixth power of the laser power, indicating a plasma process. At least 2 9 106 particles are created by each laser pulse at the maximum intensity used. Our results indicate break-even in fusion at a laser pulse energy of 1 J with the same focusing, in approximate agreement with theoretical results for ignition conditions in ultra-dense deuterium. Radiation loss at high temperature will however require higher laser energy at break-even.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?