Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Integration of expert kno… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Kontaktformulär








 


OBS! Vill du ha svar, ange e-post eller telefonnummer!




Integration of expert knowledge into radial basis function surrogate models

Artikel i vetenskaplig tidskrift
Författare Zuzana Nedelkova
Peter Lindroth
Ann-Brith Strömberg
Michael Patriksson
Publicerad i Optimization and Engineering
Volym 17
Nummer/häfte 3
Sidor 577-603
ISSN 1389-4420
Publiceringsår 2016
Publicerad vid Institutionen för matematiska vetenskaper, matematik
Sidor 577-603
Språk en
Länkar dx.doi.org/10.1007/s11081-015-9297-...
https://gup.ub.gu.se/file/204138
Ämnesord Radial basis functions, Interpolation, Approximation, Expert knowledge, Optimization, Rolling resistance coefficient
Ämneskategorier Optimeringslära, systemteori

Sammanfattning

A current application in a collaboration between Chalmers University of Technology and Volvo Group Trucks Technology concerns the global optimization of a complex simulation-based function describing the rolling resistance coefficient of a truck tyre. This function is crucial for the optimization of truck tyres selection considered. The need to explicitly describe and optimize this function provided the main motivation for the research presented in this article. Many optimization algorithms for simulation-based optimization problems use sample points to create a computationally simple surrogate model of the objective function. Typically, not all important characteristics of the complex function (as, e.g., non-negativity)—here referred to as expert knowledge—are automatically inherited by the surrogate model. We demonstrate the integration of several types of expert knowledge into a radial basis function interpolation. The methodology is first illustrated on a simple example function and then applied to a function describing the rolling resistance coefficient of truck tyres. Our numerical results indicate that expert knowledge can be advantageously incorporated and utilized when creating global approximations of unknown functions from sample points.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?