To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Analysis of the bone ultr… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction

Journal article
Authors B. Zeller-Plumhoff
C. Malich
D. Kruger
G. Campbell
B. Wiese
S. Galli
Ann Wennerberg
R. Willumeit-Romer
D. C. F. Wieland
Published in Acta Biomaterialia
Volume 101
Pages 637-645
ISSN 1742-7061
Publication year 2020
Published at Institute of Odontology
Pages 637-645
Language en
Keywords Biodegradable magnesium implants, Bone ultrastructure, Bone-implant, interface, in-vitro, magnesium, hydroxyapatite, nanostructure, alloys, crystallites, titanium, Engineering, Materials Science
Subject categories Dentistry, Biomaterials Science


Magnesium alloys are increasingly researched as temporary biodegradable metal implants in bone applications due to their mechanical properties which are more similar to bone than conventional implant metals and the fact that Magnesium occurs naturally within the body. However, the degradation processes in vivo and in particular the interaction of the bone with the degrading material need to be further investigated. In this study we are presenting the first quantitative comparison of the bone ultrastructure formed at the interface of biodegradable Mg-5Gd and Mg-10Gd implants and titanium and PEEK implants after 4, 8 and 12 weeks healing time using two-dimensional small angle X-ray scattering and X-ray diffraction. Differences in mineralization, orientation and thickness of the hydroxyapatite are assessed. We find statistically significant (p < 0.05) differences for the lattice spacing of the (310)-reflex of hydroxyapatite between titanium and Mg-xGd materials, as well as for the (310) crystal size between titanium and Mg-5Gd, indicating a possible deposition of Mg within the bone matrix. The (310) lattice spacing and crystallite size further differ significantly between implant degradation layer and surrounding bone (p < 0.001 for Mg-10Gd), suggesting apatite formation with significant amounts of Gd and Mg within the degradation layer. Statement of significance Biodegradable Magnesium-based alloys are emerging as a viable alternative for temporary bone implant applications. However, in order to understand if the degradation of the implant material influences the bone ultrastructure, it is necessary to study the bone structure using high-resolution techniques. We have therefore employed 2D small angle X-ray scattering and X-ray diffraction to study the bone ultrastructure surrounding Magnesium-Gadolinium alloys as well as Titanium and PEEK alloys at three different healing times. This is the first time, that the bone ultrastructure around these materials is directly compared and that a statistical evaluation is performed. We found differences indicating a possible deposition of Mg within the bone matrix as well as a local deposition of Mg and/or Gd at the implant site. Data availability statement The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. (C) 2019 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?