To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Quality of life in chroni… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Quality of life in chronic conditions using patient-reported measures and biomarkers: a DEA analysis in type 1 diabetes

Journal article
Authors S. Borg
U. G. Gerdtham
Katarina Eeg-Olofsson
B. Palaszewski
Soffia Gudbjörnsdottir
Published in Health Economics Review
Volume 9
Issue 1
ISSN 2191-1991
Publication year 2019
Published at Institute of Medicine, Department of Molecular and Clinical Medicine
Language en
Links dx.doi.org/10.1186/s13561-019-0248-...
Keywords Quality of life, Patient-reported outcomes measures (PROM), Patient-reported experience measures (PREM), Biomarkers, Efficiency, analysis, Diabetes, Data envelopment analysis, Benefit-of-the-doubt, european-union, care, euroqol, Business & Economics, Health Care Sciences & Services
Subject categories Endocrinology and Diabetes

Abstract

Background A chronic disease impacts a patient's daily life, with the burden of symptoms and managing the condition, and concerns of progression and disease complications. Such aspects are captured by Patient-Reported Outcomes Measures (PROM), assessments of e.g. wellbeing. Patient-Reported Experience Measures (PREM) assess patients' experiences of healthcare and address patient preferences. Biomarkers are useful for monitoring disease activity and treatment effect and determining risks of progression and complications, and they provide information on current and future health. Individuals may differ in which among these aspects they consider important. We aimed to develop a measure of quality of life using biomarkers, PROM and PREM, that would provide an unambiguous ranking of individuals, without presuming any specific set of importance weights. We anticipated it would be useful for studying needs and room for improvement, estimating the effects of interventions and comparing alternatives, and for developing healthcare with a broad focus on the individual. We wished to examine if efficiency analysis could be used for this purpose, in an application to individuals with type 1 diabetes. Results We used PROM and PREM data linked to registry data on risk factors, in a large sample selected from the National Diabetes Registry in Sweden. Efficiency analysis appears useful for evaluating the situation of individuals with type 1 diabetes. Quality of life was estimated as efficiency, which differed by age. The contribution of different components to quality of life was heterogeneous, and differed by gender, age and duration of diabetes. Observed quality of life shortfall was mainly due to inefficiency, and to some extent due to the level of available inputs. Conclusions The efficiency analysis approach can use patient-reported outcomes measures, patient-reported experience measures and comorbidity risk factors to estimate quality of life with a broad focus on the individual, in individuals with type 1 diabetes. The approach enables ranking and comparisons using all these aspects in parallel, and allows each individual to express their own view of which aspects are important to them. The approach can be used for policy regarding interventions on inefficiency as well as healthcare resource allocation, although currently limited to type 1 diabetes.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?