To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Chemical-looping combusti… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Chemical-looping combustion in a 100 kW unit using a mixture of synthetic and natural oxygen carriers - Operational results and fate of biomass fuel alkali

Journal article
Authors I. Gogolev
C. Linderholm
D. Gall
M. Schmitz
T. Mattisson
Jan B. C. Pettersson
A. Lyngfelt
Published in International Journal of Greenhouse Gas Control
Volume 88
Pages 371-382
ISSN 1750-5836
Publication year 2019
Published at Department of Chemistry and Molecular Biology
Pages 371-382
Language en
Keywords solid fuels, online measurements, calcium manganate, bed material, gasification, metal, performance, ilmenite, design, system, Science & Technology - Other Topics, Energy & Fuels, Engineering, ms ca, 1987, journal of catalysis, v107, p209
Subject categories Earth and Related Environmental Sciences


Biomass fuel use in chemical looping combustion enables negative CO2 emissions through BECCS (Bio-Energy Carbon Capture and Storage). Effective biomass utilization in CLC requires an economical and effective oxygen carrier to achieve high fuel conversion, effective CO2 capture, and management of the harmful effects of biomass alkali release (bed agglomeration, oxygen carrier deactivation, fouling and corrosion). These issues were addressed in 100 kW CLC pilot experiments. Building on previous work, a mixture of a synthetic calcium manganite perovskite and natural ilmenite was used as the oxygen carrier. Four biomass fuels of varied alkali content were tested: black pellets of steam-exploded stem wood (BP), BP impregnated with K2CO3, a mixture of 50% BP with 50% straw pellets, and wood char. Experiments showed high fuel conversion and very high CO2 capture, with overall performance exceeding that of ilmenite and manganese ore. More than 95% gas conversion was achieved with black pellets at around 950 degrees C. The fate of biomass alkali, previously virtually unknown in CLC research, was explored by implementing online surface-ionization-based measurement of alkali released in the flue gases of the fuel reactor (FR) and air reactor (AR). Release levels were found to correlate with the fuel alkali content. The flue gas measurements and bed material elemental analyses suggest that most of the fuel alkali are accumulated in the oxygen carrier. Unexpectedly, it was found that flue gas alkali release occurs in both the FR and AR, with AR exhibiting an equal or higher rate of release vs. the FR.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?