To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Multi-wavelength torus-je… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Multi-wavelength torus-jet model for Sagittarius A*

Journal article
Authors F. H. Vincent
Marek A Abramowicz
A. A. Zdziarski
M. Wielgus
T. Paumard
G. Perrin
O. Straub
Published in Astronomy & Astrophysics
Volume 624
ISSN 1432-0746
Publication year 2019
Published at Department of Physics (GU)
Language en
Links dx.doi.org/10.1051/0004-6361/201834...
Keywords Galaxy: center, accretion, accretion disks, black hole physics, relativistic processes, supermassive black-hole, accretion, radio, emission, variability, milky, size
Subject categories Astronomy, Astrophysics and Cosmology

Abstract

Context. The properties of the accretion/ejection flow surrounding the supermassive central black hole of the Galaxy Sgr A* will be scrutinized by the new-generation instrument GRAVITY and the Event Horizon Telescope (EHT). Developing fast, robust, and simple models of such flows is therefore important and very timely. Aims. We want to model the quiescent emission of Sgr A* from radio to mid-infrared wavelengths, using thermal and nonthermal synchrotron. The radiation is emitted by the overlay of a magnetized compact torus close to the black hole, and a large-scale magnetized jet. We compare model spectra and images to the multi-wavelength observable constraints available to date. We simulate EHT observations at 1.3 mm of the best-fit model for different inclinations. Methods. We use a simple analytic description for the geometry of the torus and jet. We model their emission by thermal synchrotron and kappa-distribution synchrotron, respectively. We use relativistic ray tracing to compute simulated spectra and images, restricting our analysis to the Schwarzschild (zero spin) case. A best-fit is found by adjusting the simulated spectra to the latest observed data, and we check the consistency of our spectral best fits with the radio-image sizes and infrared spectral index constraints. We use the open-source eht-imaging library to generate EHT-reconstructed images. Results. We find perfect spectral fit (chi(2 )(red)approximate to 1)both for nearly face-on and nearly edge-on views. These best fits give parameter values very close to those found by the most recent numerical simulations, which are much more complex than our model. The intrinsic radio size of Sgr A* is found to be in reasonable agreement with the centimetric observed constraints. Our best-fit infrared spectral index is in perfect agreement with the latest constraints. Our emission region at 1.3 mm, although larger than the early-EHT Gaussian best fit, does contain bright features at the less than or similar to 40 mu as scale. EHT-reconstructed images show that torus/jet-specific features persist after the reconstruction procedure, and that these features are sensitive to inclination. Conclusions. The main interest of our model is to provide a simple and fast model of the quiescent state of Sgr A*, which gives extremely similar results to those of state-of-the-art numerical simulations. Our model is easy to use and we publish all the material necessary to reproduce our spectra and images, meaning that anyone interested can use our results relatively straightforwardly. We hope that such a public tool will be useful in the context of the recent and near-future GRAVITY and EHT results.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?