To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Bipolar lophotrichous Hel… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Bipolar lophotrichous Helicobacter suis combine extended and wrapped flagella bundles to exhibit multiple modes of motility

Journal article
Authors M. A. Constantino
M. Jabbarzadeh
H. C. Fu
Z. L. Shen
J. G. Fox
F. Haesebrouck
Sara K. Lindén
R. Bansil
Published in Scientific Reports
Volume 8
ISSN 2045-2322
Publication year 2018
Published at Institute of Biomedicine
Language en
Keywords 3-dimensional tracking, regularized stokeslets, particle tracking, cell-shape, bacteria, microrheology, instability, chemotaxis, rotation, reverse, Science & Technology
Subject categories Clinical Medicine


The swimming strategies of unipolar flagellated bacteria are well known but little is known about how bipolar bacteria swim. Here we examine the motility of Helicobacter suis, a bipolar gastric-ulcer-causing bacterium that infects pigs and humans. Phase-contrast microscopy of unlabeled bacteria reveals flagella bundles in two conformations, extended away from the body (E) or flipped backwards and wrapped (W) around the body. We captured videos of the transition between these two states and observed three different swimming modes in broth: with one bundle rotating wrapped around the body and the other extended (EW), both extended (EE), and both wrapped (WW). Only EW and WW modes were seen in porcine gastric mucin. The EW mode displayed ballistic trajectories while the other two displayed superdiffusive random walk trajectories with slower swimming speeds. Separation into these two categories was also observed by tracking the mean square displacement of thousands of trajectories at lower magnification. Using the Method of Regularized Stokeslets we numerically calculate the swimming dynamics of these three different swimming modes and obtain good qualitative agreement with the measurements, including the decreased speed of the less frequent modes. Our results suggest that the extended bundle dominates the swimming dynamics.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?