To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Hedgehog inhibitor sonide… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Hedgehog inhibitor sonidegib potentiates 177Lu-octreotate therapy of GOT1 human small intestine neuroendocrine tumors in nude mice

Journal article
Authors Johan Spetz
Britta Langen
Nils Rudqvist
Toshima Z Parris
Khalil Helou
Ola Nilsson
Eva Forssell-Aronsson
Published in BMC Cancer
Volume 17
Issue 528
Pages 1-11
ISSN 1471-2407
Publication year 2017
Published at Institute of Clinical Sciences, Department of Radiation Physics
Institute of Clinical Sciences, Department of Oncology
Sahlgrenska Cancer Center
Institute of Biomedicine, Department of Pathology
Pages 1-11
Language en
Keywords Radionuclide therapy, radiation biology, Odomzo, LDE225, 177Lu-DOTATATE, GEPNET, midgut carcinoid, radiogenomics, radiosensitizer, PRRT
Subject categories Molecular biology, Cell and Molecular Biology, Radiation biology, Radiological physics, Cancer and Oncology


Background 177Lu-octreotate can be used to treat somatostatin receptor expressing neuroendocrine tumors. It is highly effective in animal models, but clinical studies have so far only demonstrated low cure rates. Hedgehog inhibitors have shown therapeutic effect as monotherapy in neuroendocrine tumor model systems and might be one option to enhance the efficacy of 177Lu-octreotate therapy. The aim of this study was to determine the therapeutic effect of combination therapy using 177Lu-octreotate and the Hedgehog signaling pathway inhibitor sonidegib. Methods GOT1-bearing BALB/c nude mice were treated with either sonidegib (80 mg/kg twice a week via oral gavage), a single injection of 30 MBq 177Lu-octreotate i.v., or a combination of both. Untreated animals served as controls. Tumor size was measured twice-weekly using calipers. The animals were killed 41 d after injection followed by excision of the tumors. Total RNA was extracted from each tumor sample and then subjected to gene expression analysis. Gene expression patterns were compared with those of untreated controls using Nexus Expression 3.0, IPA and Gene Ontology terms. Western blot was carried out on total protein extracted from the tumor samples to analyze activation-states of the Hh and PI3K/AKT/mTOR pathways. Results Sonidegib monotherapy resulted in inhibition of tumor growth, while a significant reduction in mean tumor volume was observed after 177Lu-octreotate monotherapy and combination therapy. Time to progression was prolonged in the combination therapy group compared with 177Lu-octreotate monotherapy. Gene expression analysis revealed a more pronounced response following combination therapy compared with both monotherapies, regarding the number of regulated genes and biological processes. Several cancer-related signaling pathways (i.e. Wnt/β-catenin, PI3K/AKT/mTOR, G-protein coupled receptor, and Notch) were affected by the combination therapy, but not by either monotherapy. Protein expression analysis revealed an activation of the Hh- and PI3K/AKT/mTOR pathways in tumors exposed to 177Lu-octreotate monotherapy and combination therapy. Conclusions A comparative analysis of the different treatment groups showed that combination therapy using sonidegib and 177Lu-octreotate could be beneficial to patients with neuroendocrine tumors. Gene expression analysis revealed a functional interaction between sonidegib and 177Lu-octreotate, i.e. several cancer-related signaling pathways were modulated that were not affected by either monotherapy. Protein expression analysis indicated a possible PI3K/AKT/mTOR-dependent activation of the Hh pathway, independent of SMO.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?