To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Exposure to seawater incr… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Exposure to seawater increases intestinal motility in euryhaline rainbow trout (Oncorhynchus mykiss).

Journal article
Authors Jeroen Brijs
Grant W Hennig
Albin Gräns
Esmée Dekens
Michael Axelsson
Catharina Olsson
Published in The Journal of experimental biology
Volume 220
Pages 2397-2408
ISSN 1477-9145
Publication year 2017
Published at Department of Biological and Environmental Sciences
Pages 2397-2408
Language en
Links dx.doi.org/10.1242/jeb.156000
www.ncbi.nlm.nih.gov/entrez/query.f...
Subject categories Zoology, Animal physiology

Abstract

Upon exposure to seawater, euryhaline teleosts need to imbibe and desalinate seawater to allow for intestinal ion and water absorption, as this is essential for maintaining osmotic homeostasis. Despite the potential benefits of increased mixing and transport of imbibed water for increasing the efficiency of absorptive processes, the effect of water salinity on intestinal motility in teleosts remains unexplored. By qualitatively and quantitatively describing in vivo intestinal motility of euryhaline rainbow trout (Oncorhynchus mykiss), this study demonstrates that in freshwater, the most common motility pattern consisted of clusters of rhythmic, posteriorly propagating contractions that lasted ∼1-2 minutes followed by a period of quiescence lasting ∼4-5 minutes. This pattern closely resembles mammalian migrating motor complexes (MMCs). Following a transition to seawater, imbibed seawater resulted in a significant distension of the intestine and the frequency of MMCs increased two to three-fold with a concomitant reduction in the periods of quiescence. The increased frequency of MMCs was also accompanied by ripple-type contractions occuring every 12 to 60 seconds. These findings demonstrate that intestinal contractile activity of euryhaline teleosts is dramatically increased upon exposure to seawater, which is likely part of the overall response for maintaining osmotic homeostasis as increased drinking and mechanical perturbation of fluids is necessary to optimize intestinal ion and water absorption. Finally, the temporal response of intestinal motility in rainbow trout transitioning from freshwater to seawater coincides with previously documented physiological modifications associated with osmoregulation and may provide further insight on the underlying reasons shaping the migration patterns of salmonids.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?