To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Reciprocal transplants su… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga

Journal article
Authors Daniel Johansson
Ricardo T. Pereyra
Marina Rafajlovic
Kerstin Johannesson
Published in BMC Ecology
Volume 17
Publication year 2017
Published at Department of marine sciences
Linnaeus Centre for Marine Evolutionary Biology (CEMEB)
Department of Physics (GU)
Language en
Links dx.doi.org/10.1186/s12898-017-0124-...
Keywords Asexual reproduction, Baltic Sea, Common garden, Fucus radicans, Fucus vecisulosus, Reciprocal transplant, Salinity
Subject categories Biological Sciences, Evolutionary Biology

Abstract

© 2017 The Author(s).Background: Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard's "plasticity-first" model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2-3%) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24%) and from the marginal population inside the Baltic Sea (ambient salinity 4%). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24%. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24%. Results: Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. Conclusions: Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the "plasticity-first" model for the initial colonisation of the Baltic Sea by Fucus vesiculosus.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?