To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Test-retest reproducibili… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Test-retest reproducibility of cannabinoid-receptor type 1 availability quantified with the PET ligand [¹¹C]MePPEP.

Journal article
Authors Daniela A. Riaño Barros
Colm J. McGinnity
Lula Rosso
Rolf A. Heckemann
Oliver D. Howes
David J. Brooks
John S. Duncan
Federico E. Turkheimer
Matthias J. Koepp
Alexander Hammers
Published in NeuroImage
Volume 97
Pages 151-162
ISSN 1053-8119
Publication year 2014
Published at
Pages 151-162
Language en
Keywords CB1; Positron Emission Tomography; Reliability; Intra-class correlation coefficient
Subject categories Neuroscience, Neurology, Radiology, Nuclear Medicine and Medical Imaging


BACKGROUND: Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test-retest reproducibility of measures of the PET ligand [(11)C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. METHODS: Fifteen healthy subjects (eight females; median age 32 years, range 25 to 65 years) had a 90-minute PET scan on two occasions after injection of a median dose of [(11)C]MePPEP of 364 MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30-60 min after injection. Percentage test-retest change and between-subject variability were both assessed, and test-retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. RESULTS: Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions±standard deviation 0.83±0.03), rank shaping regularised spectral analysis (0.82±0.05), and the 2kbv model (0.82±0.09), but mSUVs were also reliable for most regions (0.79±0.13). Mean test-retest changes among the five well-performing methods ranged from 12±10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32±13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). CONCLUSION: Quantification of CB1 receptor availability using [(11)C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [(11)C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?