To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Selection on oxidative ph… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes

Journal article
Authors Pierre De Wit
Samuel Dupont
Peter Thor
Published in Evolutionary Applications
Volume 9
Issue 9
Pages 1112-1223
ISSN 1752-4571
Publication year 2016
Published at Department of marine sciences
Department of Biological and Environmental Sciences
Pages 1112-1223
Language en
Keywords Ocean acidification, gene expression, evolution, transgenerational effects, adaptation, acclimation, Pseudocalanus, transcription, translation.
Subject categories Evolutionary Biology, Genetics, Biochemistry and Molecular Biology


Ocean acidification is expected to have dramatic impacts on oceanic ecosystems, yet surprisingly few studies currently examine long-term adaptive and plastic responses of marine invertebrates to pCO2 stress. Here, we exposed populations of the common copepod Pseudocalanus acuspes to three pCO2 regimes (400, 900 and 1550 μatm) for two generations, after which we conducted a reciprocal transplant experiment. A de novo transcriptome was assembled, annotated, and gene expression data revealed that genes involved in RNA transcription were strongly down-regulated in populations with long-term exposure to a high pCO2 environment, even after transplantation back to control levels. In addition, 747,000 SNPs were identified, out of which 1513 showed consistent changes in nucleotide frequency between replicates of control and high pCO2 populations. Functions involving RNA transcription and ribosomal function, as well as ion transport and oxidative phosphorylation were highly overrepresented. We thus conclude that pCO2 stress appears to impose selection in copepods on RNA synthesis and translation, possibly modulated by helicase expression. Using a physiological hypothesis-testing strategy to mine gene expression data, we herein increase the power to detect cellular targets of ocean acidification. This novel approach seems promising for future studies of effects of environmental changes in ecologically important non- model organisms.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?