To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Amino acid and N minerali… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought

Journal article
Authors Louise C. Andresen
Samuel Bodé
Albert Tietema
Pascal Boeckx
Tobias Rütting
Published in Soil
Volume 1
Issue 1
Pages 341-349
ISSN 2199-3971
Publication year 2015
Published at Department of Earth Sciences
Pages 341-349
Language en
Links dx.doi.org/10.5194/soil-1-341-2015
Subject categories Other Earth and Related Environmental Sciences, Ecology, Soil Science

Abstract

Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g−1 day−1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g−1 day−1). Gross FAA mineralization (3.4 ± 0.2 μg N g−1 day−1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6–29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5–1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization was relatively less important in the investigated heathland. This indicates more complex mineralization dynamics in semi-natural ecosystems.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?