To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Central nervous system li… - University of Gothenburg, Sweden Till startsida
To content Read more about how we use cookies on

Central nervous system lipocalin-type prostaglandin D2-synthase is correlated with orexigenic neuropeptides, visceral adiposity and markers of the hypothalamic-pituitary-adrenal axis in obese humans.

Journal article
Authors Erik Elias
Anna Benrick
Carl Johan Behre
Rolf Ekman
Henrik Zetterberg
Kaj Stenlöf
Ville Wallenius
Published in Journal of neuroendocrinology
Volume 23
Issue 6
Pages 501-7
ISSN 1365-2826
Publication year 2011
Published at Wallenberg Laboratory
Institute of Neuroscience and Physiology, Department of Physiology
Institute of Medicine, Department of Clinical Trials and Entrepreneurship
Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry
Institute of Clinical Sciences, Department of Gastrosurgical Research and Education
Pages 501-7
Language en
Subject categories Physiology, Gastroenterology and Hepatology, Psychiatry


Lipocalin-type prostaglandin D2-synthase (L-PGDS) is the main producer of prostaglandin D2 (PGD2) in the central nervous system (CNS). Animal data suggest effects of central nervous L-PGDS in the regulation of food intake and obesity. No human data are available. We hypothesised that a role for CNS L-PGDS in metabolic function in humans would be reflected by correlations with known orexigenic neuropeptides. Cerebrospinal fluid (CSF) and serum samples were retrieved from 26 subjects in a weight loss study, comprising a 3-week dietary lead-in followed by 12-weeks of leptin or placebo treatment. At baseline, CSF L-PGDS was positively correlated with neuropeptide Y (NPY) (ρ = 0.695, P < 0.001, n = 26) and galanin (ρ = 0.651, P < 0.001) as well as visceral adipose tissue (ρ = 0.415, P = 0.035). Furthermore, CSF L-PGDS was inversely correlated with CSF leptin (ρ = -0.529, P = 0.005) and tended to correlate inversely with s.c. adipose tissue (ρ = -0.346, P = 0.084). As reported earlier, leptin treatment had no effect on weight loss and did not affect CSF L-PGDS or NPY levels compared to placebo. After weight loss, the change of CSF L-PGDS was significantly correlated with the change of CSF NPY levels (ρ = 0.604, P = 0.004, n = 21). Because of the correlation between baseline CSF L-PGDS levels and visceral adipose tissue, we examined associations with hypothalamic-pituitary-adrenal (HPA) axis components. Baseline CSF L-PGDS was correlated with corticotrophin-releasing hormone (ρ = 0.764, P < 0.001) and β-endorphin (ρ = 0.491, P < 0.001). By contrast, serum L-PGDS was not correlated with any of the measured variables either at baseline or after treatment. In summary, CSF L-PGDS was correlated with orexigenic neuropeptides, visceral fat distribution and central HPA axis mediators. The importance of these findings is unclear but could suggest a role for CSF L-PGDS in the regulation of visceral obesity by interaction with the neuroendocrine circuits regulating appetite and fat distribution. Further interventional studies will be needed to characterise these interactions in more detail.

Page Manager: Webmaster|Last update: 9/11/2012

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?