To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Developmental studies of … - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Developmental studies of Xenopus shelterin complexes: the message to reset telomere length is already present in the egg

Journal article
Authors Dzeneta Vizlin-Hodzic
Jessica Ryme
Stina Simonsson
Tomas Simonsson
Published in FASEB Journal
Volume 23
Issue 8
Pages 2587-2594
ISSN 0892-6638
Publication year 2009
Published at Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology
Pages 2587-2594
Language en
Links dx.doi.org/10.1096/fj.09-129619
Keywords stamcell, cellterapi, utvecklingsbiologi, telomer, Xenopus laevis, tropicalis, oocyter
Subject categories Molecular biology, Cell Biology, Developmental Biology, Medical Genetics, Medical cell biology, Molecular biology, Laboratory animal science

Abstract

The 6-protein complex shelterin protects the telomeres of human chromosomes. The recent discovery that telomeres are important for epigenetic gene regulation and vertebrate embryonic development calls for the establishment of model organisms to study shelterin and telomere function under normal developmental conditions. Here, we report the sequences of the shelterin-encoding genes in Xenopus laevis and its close relation Xenopus tropicalis. In vitro expression and biochemical characterization of the Xenopus shelterin proteins TRF1, TRF2, POT1, TIN2, RAP1, TPP1, and the shelterin accessory factor PINX1 indicate that all main functions of their human orthologs are conserved in Xenopus. The XlTRF1 and XtTRF1 proteins bind double-stranded telomeric DNA sequence specifically and interact with XlTIN2 and XtTIN2, respectively. Similarly, the XlTRF2 and XtTRF2 proteins bind double-stranded telomeric DNA and interact with XlRAP1 and XtRAP1, respectively, whereas the XlPOT1 and XtPOT1 proteins bind single stranded telomeric DNA. Real-time PCR further reveals the gene expression profiles for telomerase and the shelterin genes during embryogenesis. Notably, the composition of shelterin and the formation of its subcomplexes appear to be temporally regulated during embryonic development. Moreover, unexpectedly high telomerase and shelterin gene expression during early embryogenesis may reflect a telomere length resetting mechanism, similar to that reported for induced pluripotent stem cells and for animals cloned through somatic nuclear transfer.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?