To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Existing Source for Muon-… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Existing Source for Muon-Catalyzed Nuclear Fusion Can Give Megawatt Thermal Fusion Generator

Journal article
Authors Leif Holmlid
Published in Fusion science and technology
Volume 75
Issue 3
Pages 208-217
ISSN 1536-1055
Publication year 2019
Published at Department of Chemistry and Molecular Biology
Pages 208-217
Language en
Links doi.org/10.1080/15361055.2018.15460...
Keywords Muon-catalyzed fusion, nuclear fusion, ultra-dense hydrogen
Subject categories Thermal energy engineering, Energy Engineering

Abstract

Fusion power generators employing muon-catalyzed nuclear fusion can be developed using a new type of laser-driven muon generator. Results using this generator have been published, and those data are now used to derive the possible fusion power using this generator. Muon-catalyzed fusion has been studied for 60 years, and the results found in such studies are used here to determine the possible power output. Since the muon source gives complex mixtures of mesons and leptons, which have very different interactions with the measuring equipment, the number of negative muons formed is not easily found exactly, but reasonable values based on numerous published experiments with different methods are used to predict the energy output. With deuterium-tritium as fuel, a fusion power generator employing the novel muon generator could give more than 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch. The power required for running a modern laser and the muon generator is estimated to be of the order of 100 W, thus giving a total energy gain of more than 10 000. The harmful radiation from such fusion power generators is mainly in the form of neutrons from the fusion reactions. Thus, thick radiation shields are necessary as for almost all other fusion concepts. This means that medium-scale thermal fusion power generators of the muon-catalyzed fusion type may become available within a relatively short time.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?