To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Impact of the 0.1% fuel s… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels

Journal article
Authors Maria Zetterdahl
J. Moldanová
Xiangyu Pei
Ravi K. Pathak
B. Demirdjian
Published in Atmospheric Environment
Volume 145
Pages 338-345
ISSN 1352-2310
Publication year 2016
Published at Department of Chemistry and Molecular Biology
Pages 338-345
Language en
Links dx.doi.org/10.1016/j.atmosenv.2016....
Keywords Emission factor, Gas emission, Marine fuel, Particle emission, SECA
Subject categories Process chemistry, Bioenergy

Abstract

Emissions were measured on-board a ship in the Baltic Sea, which is a sulfur emission control area (SECA), before and after the implementation of the strict fuel sulfur content (FSC) limit of 0.1 m/m% S on the 1st of January 2015. Prior to January 2015, the ship used a heavy fuel oil (HFO) but switched to a low-sulfur residual marine fuel oil (RMB30) after the implementation of the new FSC limit. The emitted particulate matter (PM) was measured in terms of mass, number, size distribution, volatility, elemental composition, content of organics, black and elemental carbon, polycyclic aromatic hydrocarbons (PAHs), microstructure and micro-composition, along with the gaseous emissions at different operating conditions. The fuel change reduced emissions of PM mass up to 67%. The number of particles emitted remained unchanged and were dominated by nanoparticles. Furthermore, the fuel change resulted in an 80% reduction of SO2 emissions and decreased emissions of total volatile organic compounds (VOCs). The emissions of both monoaromatic and lighter polyaromatic hydrocarbon compounds increased with RMB30, while the heavy, PM-bound PAH species that belong to the carcinogenic PAH family were reduced. Emissions of BC remained similar between the two fuels. This study indicates that the use of low-sulfur residual marine fuel oil is a way to comply with the new FSC regulation and will reduce the anthropogenic load of SO2 emissions and secondary PM formed from SO2. Emissions of primary particles, however, remain unchanged and do not decrease as much as would be expected if distilled fuel was used. This applies both to the number of particles emitted and some toxic components, such as heavy metals, PAHs or elemental carbon (EC). The micro-composition analyses showed that the soot particles emitted from RMB30 combustion often do not have any trace of sulfur compared with particles from HFO combustion, which always have a sulfur content over 1%m/m. The soot sulfur content can impact aging and cloud condensation properties. This study is an in-depth comparison of the impact of these two fuels on the emissions of particles as well as their composition and microstructure. To evaluate the impact of the use of low-sulfur residual marine fuel oils on emissions from ships, additional research is needed to investigate the varied fuel types and compositions as well as the wide range of engine conditions and properties. © 2016 Elsevier Ltd

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?