To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

mRNA Expression and Bioma… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

mRNA Expression and Biomarker Responses in Perch at a Biomonitoring Site in the Baltic Sea - Possible Influence of Natural Brominated Chemicals

Journal article
Authors Lars Förlin
Noomi Asker
Mats H. Töpel
Tobias Österlund
Erik Kristiansson
Jari Parkkonen
S. Faxneld
Joachim Sturve
Published in Frontiers in Marine Science
Volume 6
Publication year 2019
Published at Department of Mathematical Sciences
Department of marine sciences
Department of Biological and Environmental Sciences
Language en
Links dx.doi.org/10.3389/fmars.2019.00316
Keywords transcriptomics, biomonitoring, ecotoxicology, biomarkers, perch, brominated chemicals, dibenzo-p-dioxins, temporal trends, rainbow-trout, immune-system, polyhalogenated carbazoles, oxidative stress, innate immunity, read, alignment, o-methylation, teleost fish, Environmental Sciences & Ecology, Marine & Freshwater Biology
Subject categories Biological Sciences

Abstract

Perch (Perca fluviatilis) has been used in biological effect monitoring in a program for integrated coastal fish monitoring at the reference site Kvadofjarden along the Swedish east coast, which is a site characterized by no or minor local anthropogenic influences. Using a set of physiological and biochemical endpoints (i.e., biomarkers), clear time trends for "early warning" signs of impaired health were noted in the perch from this site, possibly as a result of increased baseline pollution. The data sets also showed relatively large variations among years. To identify additional temporal variation in biological parameters, global mRNA expression studies using RNA sequencing was performed. Perch collected in 2010 and 2014 were selected, as they showed variations in several biomarkers, such as the activity of the detoxification enzyme CYP1A (EROD), the plasma levels of vitellogenin, markers for oxidative stress, white blood cells count and gonad sizes. The RNA sequencing study identified approximately 4800 genes with a significantly difference in mRNA expression levels. A gene ontology enrichment analysis showed that these differentially expressed genes were involved in biological processes such as complement activation, iron ion homeostasis and cholesterol biosynthetic process. In addition, differences in immune system parameters and responses to the exposure of toxic substances have now been verified in two different biological levels (mRNA and protein) in perch collected in 2010 and 2014. Markedly higher mRNA expression of the membrane transporter (MATE) and the detoxification enzyme COMT, together with higher concentrations of bioactive naturally produced brominated compounds, such as brominated indoles and carbazoles, seem to indicate that the perch collected in 2014 had been exposed to macro- and microalga blooming to a higher degree than did perch from 2010. These results and the differential mRNA expression between the 2 years in genes related to immune and oxidative stress parameters suggest that attention must be given to algae blooming when elucidating the well-being of the perch at Kvadofjarden and other Baltic coastal sites.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?

Denna text är utskriven från följande webbsida:
http://www.gu.se/english/research/publication/?publicationId=282026
Utskriftsdatum: 2019-09-17