To the top

Page Manager: Webmaster
Last update: 9/11/2012 3:13 PM

Tell a friend about this page
Print version

Multiscale techniques for… - University of Gothenburg, Sweden Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Multiscale techniques for parabolic equations

Journal article
Authors Axel Målqvist
Anna Persson
Published in Numerische Mathematik
Volume 138
Issue 1
Pages 191-217
ISSN 0029-599X
Publication year 2018
Published at Department of Mathematical Sciences
Pages 191-217
Language en
Links doi.org/10.1007/s00211-017-0905-7
https://gup.ub.gu.se/file/207299
Keywords finite-element methods, spaces, Mathematics
Subject categories Applied mathematics

Abstract

We use the local orthogonal decomposition technique introduced in MAlqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the -norm. We present numerical examples, which confirm our theoretical findings.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?

Denna text är utskriven från följande webbsida:
http://www.gu.se/english/research/publication/?publicationId=264148
Utskriftsdatum: 2019-08-20