Developing a method for inferring transmission chains of MRSA in a hospital setting

Philip Gerlee & Jon Edman Wallér

UNIVERSITY OF GOTHENBURG

Motivation

- MRSA outbreak in a neonatal ward (Ryhov, Jönköping)
- Improved hygiene routines requires knowledge about routes of transmission
- Hypothesis: mathematical modelling can aid in finding the most likely chain of transmission

Introduction

- Mathematical modelling can aid infection control in many ways:
 - From outbreak data we can estimate diseasespecific parameters, e.g. infectivity, effect of isolation
 - With a validated model we can simulate interventions, e.g. improved hygiene, screening programmes
 - We can infer the most likely transmission chain given outbreak data, e.g. contacts, timing of symptoms

Goal of study

- We aim to build a mathematical model for inference of transmission chains
- Input: time of symptoms, genetic sequences, contact data, swab results, healthcare worker schedules, generation & incubation time PLOS COMPUTATIONAL BIOLOGY TRANSMISSION trees

RESEARCH ARTICLE

Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data

Finlay Campbell¹*, Anne Cori¹, Neil Ferguson¹, Thibaut Jombart^{1,2,3}*

Bayesian framework

- In a Bayesian model the parameters $\boldsymbol{\theta}$ (including transmission trees) are considered random variables
- A prior probability distribution of parameters $P(\theta)$ is updated using data D according to:

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

Likelihood: an example

- Assume that have an unfair coin that shows Heads with probability p and Tails with 1-p
- Assume we have data: D = HTHTT
- What value of *p* should we choose?
- The likelihood of the data $P(D | p) = p^2(1 p)^3$
- · Likelihood maximised at

The outbreaker model (Campbell et al.)

- A transmission tree is described by α_i the most recent sampled ancestor of case i and κ_i the number of generations between ancestor and case
- Remember: α_i is a random variable e.g. with 5 cases we might get $\alpha_1 = (0, 0.1, 0.1, 0.1, 0.7)$

Likelihood in outbreaker

- The likelihood of a transmission tree is composed of four terms:
 - Genetic likelihood
 - Temporal likelihood
 - Reporting likelihood
 - Contact likelihood

Genetic likelihood

- This takes into account the sequence data
- The likelihood of case j being the ancestor of i given
 - genetic similarity
 - assumed mutation rate
 - generations separating the cases

Temporal likelihood

- This takes into account the time of symptom onset and depends on an inferred time of infection
- The likelihood of case j having infected i given
 - symptom time
 - generation time distribution (serial interval)
 - incubation period distribution

Reporting likelihood

- Describes the probability of unobserved intermediate cases
- Depends on
 - number of generations separating the cases
 - probability of observation

Contact likelihood

• Depends on a contact matrix where $c_{ij} = 1$ if there is a reported between case i and j and $c_{ij} = 0$ otherwise

Extensions

- Disease transmission via healthcare workers can be accounted for by:
 - Including them into the contact data
 - Defining a new type of indirect contact
- Routine swabs of patients, parents, HCWs and environment should affect the reporting likelihood

Questions & suggestions?