Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Unraveling factors leading to efficient norbornadiene-quadricyclane molecular solar-thermal energy storage systems

Artikel i vetenskaplig tidskrift
Författare K. Jorner
A. Dreos
R. Emanuelsson
O. El Bakouri
I. F. Galvan
Karl Börjesson
F. Feixas
R. Lindh
B. Zietz
K. Moth-Poulsen
H. Ottosson
Publicerad i Journal of Materials Chemistry A
Volym 5
Nummer/häfte 24
Sidor 12369-12378
ISSN 2050-7488
Publiceringsår 2017
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 12369-12378
Språk English
Länkar dx.doi.org/10.1039/c7ta04259k
Ämnesord GENERALIZED-GRADIENT-APPROXIMATION, DONOR-ACCEPTOR NORBORNADIENE, EXCITED-STATE AROMATICITY, SUBSTITUTED NORBORNADIENES, ORGANIC-PHOTOCHEMISTRY, ORBITAL METHODS, AB-INITIO, DENSITY, ISOMERIZATION, DERIVATIVES
Ämneskategorier Kemi

Sammanfattning

Developing norbornadiene-quadricyclane (NBD-QC) systems for molecular solar-thermal (MOST) energy storage is often a process of trial and error. By studying a series of norbornadienes (NBD-R-2) doubly substituted at the C7-position with R = H, Me, and iPr, we untangle the interrelated factors affecting MOST performance through a combination of experiment and theory. Increasing the steric bulk along the NBD-R-2 series gave higher quantum yields, slightly red-shifted absorptions, and longer thermal lifetimes of the energy-rich QC isomer. However, these advantages are counterbalanced by lower energy storage capacities, and overall R = Me appears most promising for short-term MOST applications. Computationally we find that it is the destabilization of the NBD isomer over the QC isomer with increasing steric bulk that is responsible for most of the observed trends and we can also predict the relative quantum yields by characterizing the S-1/S-0 conical intersections. The significantly increased thermal half-life of NBD-iPr(2) is caused by a higher activation entropy, highlighting a novel strategy to improve thermal half-lives of MOST compounds and other photo-switchable molecules without affecting their electronic properties. The potential of the NBD-R-2 compounds in devices is also explored, demonstrating a solar energy storage efficiency of up to 0.2%. Finally, we show how the insights gained in this study can be used to identify strategies to improve already existing NBD-QC systems.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?