Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Temperature dependence of protein-water interactions in a gated yeast aquaporin

Artikel i vetenskaplig tidskrift
Författare C. Aponte-Santamaria
Gerhard Fischer
Petra Båth
Richard Neutze
B. L. de Groot
Publicerad i Scientific Reports
Volym 7
ISSN 2045-2322
Publiceringsår 2017
Publicerad vid Institutionen för kemi och molekylärbiologi
Språk English
Länkar dx.doi.org/10.1038/s41598-017-04180...
Ämnesord PHOTOSYNTHETIC REACTION-CENTER, SERIAL FEMTOSECOND CRYSTALLOGRAPHY, MOLECULAR-DYNAMICS SIMULATIONS, PARTICLE MESH EWALD, FORCE-FIELD, MEMBRANE-PROTEIN, STRUCTURAL INSIGHTS, CRYSTAL-STRUCTURE, FREEZE, TOLERANCE, LIPID-BILAYER
Ämneskategorier Biokemi

Sammanfattning

Regulation of aquaporins is a key process of living organisms to counteract sudden osmotic changes. Aqy1, which is a water transporting aquaporin of the yeast Pichia pastoris, is suggested to be gated by chemo-mechanical stimuli as a protective regulatory-response against rapid freezing. Here, we tested the influence of temperature by determining the X-ray structure of Aqy1 at room temperature (RT) at 1.3 angstrom resolution, and by exploring the structural dynamics of Aqy1 during freezing through molecular dynamics simulations. At ambient temperature and in a lipid bilayer, Aqy1 adopts a closed conformation that is globally better described by the RT than by the low-temperature (LT) crystal structure. Locally, for the blocking-residue Tyr31 and the water molecules inside the pore, both LT and RT data sets are consistent with the positions observed in the simulations at room-temperature. Moreover, as the temperature was lowered, Tyr31 adopted a conformation that more effectively blocked the channel, and its motion was accompanied by a temperature-driven rearrangement of the water molecules inside the channel. We therefore speculate that temperature drives Aqy1 from a loosely-to a tightly-blocked state. This analysis provides high-resolution structural evidence of the influence of temperature on membrane-transport channels.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?