Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films

Artikel i vetenskaplig tidskrift
Författare Simon Isaksson
Erik B. Watkins
Kathryn L. Browning
Tania Kjellerup Lind
Marité Cárdenas
Kristina Hedfalk
Fredrik Höök
Martin Andersson
Publicerad i Nano letters
Volym 17
Nummer/häfte 1
Sidor 476–485
ISSN 1530-6984
Publiceringsår 2017
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 476–485
Språk en
Länkar dx.doi.org/10.1021/acs.nanolett.6b0...
Ämnesord Aquaporin; Lipid bilayer; Liposome; Membrane protein; Neutron reflectivity; Silica
Ämneskategorier Biokemi, Materialkemi

Sammanfattning

Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?