Till startsida
Sitemap
To content Read more about how we use cookies on gu.se

Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris

Journal article
Authors Lasse Tarvainen
Martina Lutz
Mats Räntfors
Torgny Näsholm
Göran Wallin
Published in Physiologia Plantarum : An International Journal for Plant Biology
ISSN 0031-9317
Publication year 2017
Published at Department of Biological and Environmental Sciences
Language en
Links onlinelibrary.wiley.com/doi/10.1111...
Keywords carboxylation, electron transport, Jmax, phosphorus, photosynthesis, resource use efficiency, Scots pine, Vcmax
Subject categories Biological Sciences, Botany

Abstract

A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (Vcmax) and electron transport (Jmax), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that Vcmax and Jmax exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study we investigated the temperature dependencies of Vcmax and Jmax in one-year-old needles of mature boreal Pinus sylvestris L. (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of Vcmax or Jmax when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modelling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability.

Page Manager: Webmaster|Last update: 9/11/2012
Share:

The University of Gothenburg uses cookies to provide you with the best possible user experience. By continuing on this website, you approve of our use of cookies.  What are cookies?